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1 Topological spaces=top. sp’s

1.1 Topology=top.

X 6= ∅: a set, 2X : a family of all subsets of X,

O ⊂ 2X : topology
def⇐⇒ (1) X, ∅ ∈ O. (2) U, V ∈ O ⇒ U ∩ V ∈ O. (3) Uλ ∈ O(λ ∈ Λ) ⇒∪

λ∈Λ Uλ ∈ O.
U ∈ O is called an open set.

(X,O): a topological sp. O = OX .

A closed set F ∈ C = Oc def⇐⇒ F c ∈ O, (where Oc is a family of complements of all open
subsets, it is not 2X \ O. In this paper, a set operation for a family of subsets mean a family of
operated elements = sets, e.g. complement, closure, union, intersection, etc.)

{X, ∅}: a trivial top. = an indiscrete top. In this space, any non-empty sets are connected.
2X : a discrete top. In this space, any subsets are open and closed, and every subsets except

singletons are disconnected.
A relative top. of A ⊂ X; OA := OX ∩ A.
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1.2 Metric sp’s.

A metric d = dX : X ×X → [0,∞]: a mapping s.t. ∀x, y, z ∈ X,
(1) d(x, y) ≥ 0, = 0 ⇐⇒ x = y (2) d(x, y) = d(y, x) (3) d(x, z) ≤ d(x, y) + d(y, z).
(1) non-negativity, zero-value identity (2) symmetry (3) triangle inequality.

(X, d) = (X, dX): a metric sp.
In Rn, d(x, y) = |x − y| (|x| = |(x1, . . . , xn)| := (x2

1 + · · · + xn2)1/2) is a metric, Rn is called
n-dimensional Euclidean sp.

A δ-neighborhood of x: Uδ(x) := {y ∈ X; d(x, y) < δ} (Uδ(x) = U(x; δ) = B(x; δ) = Bδ(x)).
Let (X,O) be a top. sp.

U : an open set of a metric sp.
def⇐⇒ ∀x ∈ U, ∃δ > 0;Uδ(x) ⊂ U .

x: a boundary point=pt of A
def⇐⇒ ∀ε > 0, Uε(x) ∩ A 6= ∅, Uε(x) ∩ Ac 6= ∅.

x: an inner pt of A
def⇐⇒ ∃δ > 0;Uδ(x) ⊂ A.

x: an outer pt of A
def⇐⇒ ∃δ > 0;Uδ(x) ⊂ Ac.

∂A: the boundary of A, Ao: the interior of A, (A)c: the exterior of A.
A = A ∪ ∂A: the closure of A.
C: a closed set of a metric sp.

def⇐⇒ ∂C ⊂ C ⇐⇒ C = C. ⇐⇒ Cc: open.

1.3 A system of neighborhoods, a topological basis = an open basis

Let (X,O = OX) be a top. sp.
∀x ∈ X fix. V ⊂ X: a neighborhood=nbd of x

def⇐⇒ ∃U ∈ O; x ∈ U ⊂ V .
N (x): a system of nbds=a family of all nbds of x. NO(x) := N (x) ∩ O, NC(x) := N (x) ∩ C

Clearly, a system of open nbds is a collection of all closures of open nbds, i.e.,
NC(x) = NO(x) = {U ;U ∈ NO(x)}.

U ∈ NO(x) ⇐⇒ x ∈ U ∈ O. Hence U ∈ O ⇐⇒ ∀x ∈ U, ∃Vx ∈ NO(x); x ∈ Vx ⊂ U
Question Show the above equivalent. ⇒ Clear. ⇐ U =

∪
x∈U Vx is open.

B ⊂ O: a topological basis = an open basis
def⇐⇒ {

∪
U ;U ⊂ B} ≡ {

∪
λ Uλ; {Uλ} ⊂ B} = O.

B0 ⊂ O: a quasi-basis
def⇐⇒ {

∩n
k=1Bk;Bk ∈ B0, k = 1, 2, . . . , n, n ≥ 0} is a top. basis, i.e.,

{
∪

λ

∩nλ
k=1Bλ,k;Bλ,k ∈ B0, k = 1, 2, . . . , nλ, nλ ≥ 0} = O, where if n = 0, then

∩n
k=1Bk = X.

In R, {(−∞, b), (a,∞); a, b ∈ Q} is a quasi-basis.
In Rn, {Ur(q); r ∈ Q+, q ∈ Qn}, {

∏n
k=1(ak, bk); ak, bk ∈ Q} are top. basises.

By these, Rn satisfies 2nd axiom of countability.

N0(x) ⊂ N (x): a neighborhood basis
def⇐⇒ ∀V ∈ N (x), ∃U(x) ∈ N0(x);x ∈ U(x) ⊂ V .

In Rn, {U1/n(x);n ≥ 1} is a nbd basis.

1st axiom of countability =∃ a countable nbd basis.
2nd axiom of countability = ∃ a countable top. basis.

Clearly, 2nd axiom of countability ⇒ 1st one.

1.4 Continuous mappings=conti. map’s

A map. f : (X,OX) → (Y,OY ) is continuous=conti.
def⇐⇒ ∀V ∈ OY , f

−1(V ) ∈ OX , i.e., f−1(OY ) ⊂
OX . ⇐⇒ f−1(CY ) ⊂ CX . (x ∈ f−1(V )

def⇐⇒ f(x) ∈ V ).

Note that f : X → Y ;x 7→ f(x): a mapping=map.
def⇐⇒ ∀x ∈ X, ∃1y ∈ Y ; y = f(x).
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In a metric sp., a map. f : (X, dx) → (Y, dY ) is conti.
def⇐⇒ ∀x ∈ X, f : conti. at x. ⇐⇒

∀x ∈ X, ∀ε > 0, ∃δ > 0; ∀x′ ∈ X; dX(x, x′) < δ, dY (f(x), f(x
′)) < ε. ⇐⇒ ∀x ∈ X, ∀ε > 0, ∃δ > 0;Uδ(x) ⊂

f−1(Uε(f(x)))
· The above def. is equivalent to the def. in top.
(⇒) ∀V ∈ OY ,

∀x ∈ f−1(V ), f(x) ∈ V and by V being open, ∃ε > 0;Uε(f(x)) ⊂ V . By the
assumption, ∃δ > 0;Uδ(x) ⊂ f−1(Uε(f(x))) ⊂ f−1(V ). This implies f−1(V ) is open.

(⇐) ∀x ∈ X, ∀ε > 0, by the assumption, ∀x′ ∈ V := f−1(Uε(f(x))),
∃δ > 0;Uδ(x

′) ⊂ V . It can be
taken as x′ = x, and hence, Uδ(x) ⊂ V .

For a map. f : X → (Y,OY ), OX = f−1(OY ): the weakest top. of X such that f is conti.
For a map. f : (X,OX) → Y , OY = {B ⊂ Y ; f−1(B) ∈ OX}: the strongest top. of Y such that f

is conti.
(X,OX): a top. sp., ∼: a equivalent relation in X. For the quotient set Y = X/∼3 [x] 3 y

def⇐⇒
x ∼ y, f : X → X/ ∼; f(x) = [x], a quotient top. OX/∼ 3 B ⊂ X/ ∼ def⇐⇒ f−1(B) ∈ OX ,
where a equivalence relation ∼ is a binary relation that is reflexive, symmetric and transitive; x ∼ x,
x ∼ y ⇒ y ∼ x, x ∼ y, y ∼ z ⇒ x ∼ z.

The above top’s are called induced top’s.
For a map. f : (X,OX) → (Y,OY ), f is an open map. if f(OX) ⊂ OY , and f is a closed map. if

f(CX) ⊂ CY .
(X,OX) is homeomorphic to (Y,OY ), or X,Y are homeomorphic if ∃f : X → Y is 1-1 onto, conti.

and an open map.
For (X1,O1), . . . , (Xn,On), a product top. of X =

∏n
k=1Xk: OX 3

∪
λ Uλ : Uλ ∈

∏n
k=1Ok.

In infinite case, the product top. is the weakest top. such that every projections are continuous.
That is, let (Xλ,Oλ)λ∈Λ: top. sp. X =

∏
λ∈ΛXλ and Pλ : X → Xλ; (xλ) 7→ xλ: a projection, The

product top. OX is a top. such that {P−1
λ Uλ, Uλ ∈ Oλ} is a quasi basis, i.e., a family of cylinder sets

{
∩n

k=1 P
−1
λk

Uλk
;Uλk

∈ Oλk
, k = 1, 2, . . . , n, n ≥ 0} is a top. basis. (The intersection of 0-numbers is the

total set X.) More concretely,
OX 3 V =

∪
α∈A Vα;Vα =

∩nα
k=1 P

−1
λα,k

Uλα,k
; (Uλα,k

∈ Oλα,k
, k = 1, . . . , nα, nα ≥ 0),

2 Topological structures; Compacts, Connected and Sep-

aration axioms

2.1 Compacts=cpt’s

A set is compact=cpt if for an arbitrary open covering, there exists a finite open covering, where an
open covering=O.C. is a family of open subsets such that the union contains the set.

K ⊂ X: cpt
def⇐⇒ ∀U ⊂ O;K ⊂

∪
U , ∃U1, . . . , Un ∈ U ;K ⊂

∪n
k=1 Uk.

Note that ∀U ⊂ O;K ⊂
∪
U , ∃U1, . . . , Un ∈ U ;K ⊂

∪n
k=1 Uk ⇐⇒ ∀F ⊂ C;

∩
F∩K = ∅, ∃F1, . . . , Fn ∈

F ;
∩n

k=1 Fk ∩ K = ∅ ⇐⇒ ∀F ⊂ C; ∀n ≥ 1, ∀F1, . . . , Fn ∈ F ,
∩n

k=1 Fk ∩ K 6= ∅, i.e., F has a finite
intersection property in K, then

∩
F ∩K 6= ∅

Hence, K ⊂ X: cpt ⇐⇒ ∀F ⊂ C having finite intersection propery in K, i.e., ∀n ≥ 1, ∀F1, . . . , Fn ∈
F ,

∩n
k=1 Fk ∩K 6= ∅,

∩
F ∩K 6= ∅

⇐⇒ ∀E ⊂ 2X ; ∀n ≥ 1, ∀E1, . . . , En ∈ E ,
∩n

k=1Ek ∩K 6= ∅,
∩
E ∩K 6= ∅, where

∩
E =

∩
{E;E ∈ E}. .

If a total set is cpt, then it is called a cpt (top.) sp., if a subset is cpt, then it is called a cpt
(sub)set, and if a closure is cpt, then it is called a relatively cpt.

· A closed subset F of a cpt set C is cpt.
∀U ⊂ O: O.C. of F , U ∪ {F c} is an O.C. of C. ∃U1, . . . , Un ∈ U ;C ⊂

∪
Uk ∪ F c. Hence F ⊂

∪
Uk.

· A cpt subset C of a Hausdorff sp. is closed.
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∀x ∈ Cc: fixed. ∀y ∈ C, ∃Uy, Vy ∈ O;x ∈ Uy, y ∈ Vy, Uy ∩ Vy = ∅. {Vy}y∈C is an O.C. of C.
∃y1, . . . , yn ∈ C;C ⊂

∪
Vyk . Hence, U :=

∩
Uyk ∈ O and x ∈ U ⊂ Cc. Therefore Cc is open, i.e., C is

closed.
· A continuous image of a cpt set is also cpt.
· A continuous map. from a cpt top sp. to a Hausdorff sp. is an open map. Especially, if it is 1-1

onto, then it is homeomorphic.
A closed set of a cpt set is cpt and its conti. image is also cpt. Moreover, the cpt set of a Hausdorff

sp. is closed.
· Tychonoff’s theorem: A product top. sp. of any numbers of cpt sp’s is cpt and vice verse.
∀λ ∈ Λ, Xλ: cpt ⇐⇒ X =

∏
λ∈ΛXλ: cpt

(⇐) Projections Pλ : X → Xλ; (xλ) 7→ xλ are conti. and a cpt image Xλ = PλX is also cpt.
(⇒) For a fixed arbitrary F ⊂ C having finite intersection property, we show

∩
F 6= ∅.

E = {E ⊂ 2X ; E ⊃ F having finite intersection property}.

This is an inductive ordered set by containment relationship as an order. In fact, for a total order part,
a family of subsets F0 = E which are all elements of the part is a maximal element of the part. (see (i)
in the next question). In this case, by the local maximum property of E , the following hold:

(1) E1, . . . , En ∈ E ⇒ E1 ∩ · · · ∩ En ∈ E (by finite intersection property and loc. max. property).
(2) A ⊂ X, ∀E ∈ E , A ∩ E 6= ∅ ⇒ A ∈ E . ( by (1))
For each λ ∈ Λ, by using a projection Pλ, let

Eλ := PλE = {PλE;E ∈ E}.

For E1, . . . , En ∈ E , by
∩
PλEk ⊃ Pλ(

∩
Ek) they have finite intersection property, and by Xλ being cpt,

∃xλ ∈
∩

Eλ. Hence, it is enough to show x := (xλ)λ∈Λ ∈
∩
E , because F ⊂ E implies

∩
E ⊂

∩
F and

the proof is finished (For the existence of x, we use axiom of choice), where E := {E;E ∈ E}. The proof
needs the loc. max. property and finite intersection property. (In general, the existence of an element of
the intersection of projections does not ensure the existence an element of the intersection in the product
sp. (see (ii) in the next question). ∀E ∈ E . For a nbd of x; U :=

∩n
k=1 P

−1
λk

(Uλk
) = P−1

λk
(
∩n

k=1 Uλk
)

(Uλk
∈ N (xλk

): a nbd of xλk
), U ∩ E 6= ∅ holds. In fact, by xλ ∈ PλE, ∀Uλ ∈ N (xλ), Uλ ∩ PλE 6= ∅.

Hence P−1
λ (Uλ) ∩ E 6= ∅ (see (iii) in the next question), and since E ∈ E is arbitrary and by (2),

P−1
λ (Uλ) ∈ E holds. Moreover, by the property (1), U =

∩n
k=1 P

−1
λk

(Uλk
) ∈ E holds. By finite intersection

property of E , U ∩ E 6= ∅. Here, note that a family of all nbds of U is a nbd basis of the product sp. X,
we have x ∈ E. Since E ∈ E is arbitrary, we have x ∈

∩
E .

Question In the above proof, show the following:
(i) Let L ⊂ E be a total order part of E and let F0 :=

∪
L = {E ∈ E ; E ∈ L}. Then F0 ∈ E, that is,

it contains F and has finite intersection property.
(ii) Make an example of three subsets of R2 such that the intersection of three is empty, however the

intersection of three projections is not empty.
(→ each side of an equilateral triangle.)

(iii) show Uλ ∩ PλE 6= ∅. implies P−1
λ (Uλ) ∩ E 6= ∅.

· In Euclidean sp., cpt=bounded closed.
(⇒) C: cpt. ∃x1, . . . , xn ∈ C;C ⊂ U1(x1) ∪ · · · ∪ U1(xn). Hence C: bdd. A cpt set in a Hausdorff sp.

is closed. (⇐) C: bdd closed in Rn. ∃R :=
∏n

k=1[ak, bk] ⊃ C. Assume ∃U : O.C. of C; it has no finite
O.C., Divide R equally among 2n. There exists at least one part R1 such that it cannot be covered by
finite numbers of O.C. and divide it again and we can define R2. Contnuing these, we have Rk; it cannot
be covered by finite number of U . Then ∃x ∈ C;Rk ↓ {x}, ∃U ∈ U ;x ∈ U and ∃Uδ(x) ⊂ U . This implies
∃K ≥ 1; ∀k ≥ K,Rk ⊂ Uδ(x) ⊂ U . However, this contradicts. to the definition of Rk.

· X: cpt, f : X → R conti. ⇒ ∃max f,min f .
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f(X): cpt=bdd closed in R. Hence sup f(X) = max f, inf f(X) = min f . In fact,∃yn ∈ f(X); yn ↑
y0 := sup f(X). Since f(X) is closed, y0 ∈ f(X), i.e., ∃x0 ∈ X; y0 = f(x0) = max f .

K ⊂ X: sequentially cpt
def⇐⇒ ∀{xn} ⊂ K, ∃{nk};xnk

→ ∃x ∈ K.

Note that xn → x in (X,O)
def⇐⇒ ∀U ∈ N (x), ∃N ≥ 1; ∀n ≥ N, xn ∈ U .

By this it holds that
· C ∈ C ⇒ ∀{xn} ⊂ C;xn → ∃x ∈ X,x ∈ C. Moreover, if X satifies 1st axiom of countability, i.e.,

existece of a countabile nbd basis, then the inverse holds.
(⇒) If x /∈ C, then ∃U ∈ N (x);x ∈ U ⊂ Cc. By xn → x, ∃N ≥ 1; ∀n ≥ N, xn ∈ U . However this

contradicts to xn ∈ C (∀n ≥ 1).
(⇐) Assume existece of countabile nbd basis.
If C is not closed, then Cc is not open. Hence, ∃x ∈ Cc; ∀U ∈ N (x), U 6⊂ Cc. Let N0(x) = {Un} be a

countable nbd basis of x. We may assume Un ↓. Hence ∀n ≥ 1, ∃xn ∈ C ∩ Un. That is, xn → x. However
x /∈ C. This cotradicts the assumption.

C ⊂ X: countably cpt:
def⇐⇒ ∀{Un}: O.C. of C, ∃{nk}k≤K ; {Unk

}k≤K : O.C. of C.

X: locally cpt:
def⇐⇒ ∀x ∈ X, ∃U ∈ N (x);U : cpt.

· cpt ⇒ countably cpt.
· seq. cpt ⇒ countably cpt.
It is enough to show that

∩
Fn 6= ∅ for ∀{Fn} ⊂ C; having finite intersection property. For ∀N ≥ 1, fix

xN ∈
∩N

n=1 Fn =: CN ∈ C. Then ∃{nk}; ∃x ∈ X;xnk
→ x. For ∀N ≥ 1, if n ≥ N , then xn ∈ CN . Hence,

x ∈ CN and x ∈
∩

N≥1CN =
∩

N≥1 FN .
· Under 1st axiom of countablity, countably cpt ⇒ seq. cpt., that is, they are equivalent.
∀{xn}, Fn := {xk; k ≥ n}, n ≥ 1 have finite intersection property. Hence, by the assumption, ∃x ∈∩

Fn. If we assume ∃U ∈ N (x), ∃N ≥ 1; ∀n ≥ N, xn /∈ U , then FN ∩ U = ∅, i.e., FN ⊂ U c, and hence,
x ∈

∩
n≥1 Fn ⊂ U c. This contradicts x ∈ U . Therefore, ∀U ∈ N (x), ∀k ≥ 1, ∃nk ≥ k;xnk

∈ U . Let
Uk, k ≥ 1 be a countable nbd basis of x. If we set VK =

∪
k≤K Uk, then it is also a nbd basis. From the

above result, ∀k ≥ 1 we can take nk(≥ k),⇈;xnk
∈ Vk as follows: First we take n1 ≥ 1 and if nk > nk−1

is determined, then we take nk+1 ≥ k ∨ (nk + 1).
Moreover,
· under 2nd axiom of countability, countabily cpt ⇒ cpt, that is, they are equivalent.
Let B ⊂ O be a countable top. basis. ∀U ∈ O, ∃B′ ⊂ B;U =

∪
B′.

For anu O.C. U , ∃B′ ⊂ B;
∪

U =
∪
B′. Therefore ∃V1, . . . , Vn ∈ B′: O.C. For each k = 1, . . . , n,

∃Uk ∈ U ;Vk ⊂ Uk. Thus, {Uk} is also an O.C.
· Countably cpt + Lindelöf property ⇐⇒ cpt, where Lindelöf property: For an arbitrary O.C.,

there exists a countable O.C.

2.2 Connected

A ⊂ X: connected
def⇐⇒ ∀U, V ∈ O; [U ∩ A, V ∩ A 6= ∅, U ∩ V = ∅], A 6⊂ U ∪ V ⇐⇒ If B ⊂ A: open

and closed in A, then B = ∅ or B = A, where B: open (closed) in A
def⇐⇒ ∃U ∈ O(∈ C);B = A ∩ U .

A is disconnected = not connected
def⇐⇒ ∃U, V ∈ O;U ∩A, V ∩A 6= ∅, U ∩ V = ∅, A ⊂ U ∪ V .

· f : X → Y : conti. X is connected ⇒ f(X) is connected.
If f(X) is not connected, then ∃U, V ∈ OY ; f(X) ∩ U, f(X) ∩ V 6= ∅, f(X) ⊂ U ∪ V . However this

implies X is not connected; X = f−1(U) ∪ f−1(V ).
· A: connected ⇒ A ⊂ ∀B ⊂ A: connected.
If A ⊂ ∃B ⊂ A is not connected, then ∃U, V ∈ O;U ∩B, V ∩B 6= ∅, U ∩ V = ∅, B ⊂ U ∪ V . However

this implies A is not connected. Because if A ∩ U = ∅, then A ∩ U = ∅. However ∅ 6= B ∩ U ⊂ A ∩ U .
This contradicts.

· Aλ, λ ∈ Λ: conected Aλ ∩Aλ′ 6= ∅ if λ 6= λ′ ⇒
∪
Aλ: connected.
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It is easy by reductio ad absurdum. In fact, if A :=
∪
Aλ is not connected, then ∃U, V ∈ O;A ∩

U,A ∩ V 6= ∅, A ⊂ U ∪ V . For ∀λ, since Aλ is connected, we have Aλ ⊂ U or ⊂ V . Moreover we have
∃Aλ ⊂ U, ∃Aλ′ ⊂ V . This cotradicts Aλ ∩Aλ′ 6= ∅.

·
∏

λ∈ΛAλ connected ⇐⇒ ∀λ,Aλ: connected.
(⇒) Every projection Pλ is conti. and a conti. image of a connected set is also connected.
(⇐) 2 numbers case: A × B 3 (a0, b0): fixed. {a0} × B,A × {b0} are connected in the product top.

and the intersection contains (a0, b0). Hence by the above result, {({a0}×B)∪ (A×{b0})} is conneected.
Therefore A×B is connected by the following

A×B =
∪
a∈A

{a} ×B =
∪
a∈A

{({a} ×B) ∪ (A× {b0})}.

In general case: Fix a point (aλ) ∈ A :=
∏

Aλ (by using the axiom of choice). Let

B =
{∏

Bλ;
∀n ≥ 1, ∀λ1, . . . , λn ∈ Λ, Bλk

= Aλk
, and Bλ = {aλ} if λ 6= λk, k=1,. . . , n

}
.

Since the every element of B is connected and (aλ) is an intersection element,
∏

Aλ =
∪
B is connected.

A connected component is a maximal conected set.
· Connected sets of R are only intervals [a, b], (a, b], (a, b), (a, b], where if a = b, then [a, a] = {a} and

the others are empty, or if a = −∞, then [a, (a = (−∞, or if b = +∞, then b], b) = +∞).
· A real-values conti. function on a connected set satisfies the intermediate value theorem.
X: connected, f : X → R: conti. ⇒ ∀a, b ∈ X; f(a) < f(b), ∀γ ∈ (f(a), f(b)), ∃c ∈ X; f(c) = γ.
The conti. image of connected is connected and it is an interval in R. Hence the claim is clear.

X: path-connected
def⇐⇒ ∀x, x′ ∈ X, ∃x → x′: a path, i.e., ∃f : [0, 1] → X: conti., f(0) = x, f(1) =

x′, f([0, 1]) is called a path from x to x′ and denoted as x → x′.
· path-connected ⇒ connected.
In R2 the union X of the following line segments is connected, but not path-connected:
(0, 1]× {0}, {0} × (0, 1], {1/n} × [0, 1](n = 1, 2, ...)
It is clear that X 3 {(0, 0)} is not path-connected.
The unionX1 of {0}×(0, 1], {1/n}×[0, 1](n = 1, 2, ...) is path-connected, i.e., connected and X1\{O} =

X is also connected.
X: locally connected

def⇐⇒ ∀x ∈ X, ∃B(x): a nbd-basis; ∀V ∈ B(x) is connected.
· X: loc. connected ⇐⇒ ∀U ∈ O, ∀C ⊂ U : connected comp. is open.
(⇒) ∀U ∈ O, ∀C ⊂ U ;C 6= ∅. ∀x ∈ C, by loc.connected, ∃V ∈ N (x);V ⊂ C, V : connected. In fact, if

V 6⊂ C, then V ∪ C is conneceted. This contradicts maximal property of C. Therefore, C is open.
(⇐) We show {V ; connected open nbd’s } is a top. basis. Since {x} is connected, ∀U ∈ O, ∀x ∈ U, x ∈

∃V ⊂ U ;V : connected comp. By the assumption, V is open, and hence, the family of all such V ’s is a
top. basis.

2.3 Homeomorphic, compact and connected

· f : X → Y : homeo. X cpt (or connected) ⇒ f(X): cpt (or connected).
· R 6≈ R2 (not homeo.) R \ {0} is not connected. However, R2 \ {(a, b)} is connected.
· R ≈ (0, 1) 6≈ (0, 1]. (0, 1] \ {1} = (0, 1) is connected, however (0, 1) \ {a} is not connected.
· R 6≈ S1. Sn: cpt, Rn: not cpt.

2.4 Separation axioms

Recall NO(x) := N (x) ∩ O: open nbds of x, NC(x) := N (x) ∩ C: closed nbds of x.

6



T1: (Fréchet’s axiom) ∀x, y;x 6= y, ∃Ux ∈ NO(x); y /∈ Ux ⇐⇒ ∀x,
∩
N (x) = {x} ⇐⇒ ∀x, {x} ∈ C.

T2: (T2 sp.=Hausdorff sp.) ∀x, y;x 6= y, ∃Ux ∈ NO(x), Vy ∈ NO(y);Ux ∩ Vy = ∅. ⇐⇒ ∀x, {x} =∩
(N (x) ∩ C).
(⇒) If ∃y 6= x; y ∈

∩
NC(x), then

∀Fx ∈ NC(x), y ∈ Fx. This cotradicts T2. In fact, by T2,
∃Ux ∈

NO(x);Ux 63 y. Fx := Ux does not satisfies the above result.
(⇐) ∀x, y;x 6= y, by the assumption, ∃Fx ∈ NC(x); y /∈ Fx. Hence, Ux := F o

x ∈ NO(x), Vy := F c
x ∈

∩NO(y).
· In this sp. uniqueness of a limit of a sequence holds.
In N, if we define C 3 ∅,N and all finite sets, then this is a T1-sp., however not T2. Moreover, {n}

convereges to any k ∈ N.
T3: (Vietoris’s axiom) ∀x, ∀F 6= ∅;x /∈ F ∈ C, ∃Ux, VF ∈ O;x ∈ Ux, F ⊂ VF , Ux ∩ VF = ∅.
T4: (Tietoze’s axiom) ∀F, F ′ 6= ∅,∈ C;F ∩ F ′ = ∅, ∃UF , UF ′ ∈ O;F ⊂ UF , F

′ ⊂ UF ′ , UF ∩ UF ′ = ∅.
Clearly, · T2 ⇒ T1.
A regular sp. = T1 + T3 ⇐⇒ T2 + T3

A normal sp. = T1 + T4 ⇐⇒ T2 + T4

· normal ⇒ regular ⇒ Hausdorff ⇒ T1

T ∗: ∀x, ∀F ∈ C;x /∈ F, ∃f : X → [0, 1]; conti. f(x) = 0, f = 1 on F .
A completely regular sp. = T1 + T ∗

· normal ⇒ completely regular ⇒ regular
1st ⇒ is clear from the following lemma and that singleton is closed by T1. 2nd ⇒ is clear by

Ux = {f < 1/2}, VF = {f > 1/2}, where f is a conti, ft in T ∗.
· [Urysohn’s Lemma]
T4 ⇐⇒ ∀F, F ′ 6= ∅,∈ C;F ∩ F ′ = ∅, ∃f : X → [0, 1]; conti. f = 0 on F , f = 1 on F ′.
First,
· T4 ⇐⇒ T ′

4: ∅ 6= ∀F : closed, ∀U ⊃ F : open, ∃V ∈ O;F ⊂ V ⊂ V ⊂ U .
For F, F ′ 6= ∅,∈ C;F ∩ F ′ = ∅. let U := (F ′)c ⊃ F . By T ′

4 we can make a conti. ft f as follows:
Let G1 = U (F ′)c. ∃G0 ∈ O;F ⊂ G0 ⊂ G0 ⊂ G1.

∃G1/2 ∈ O;G0 ⊂ G1/2 ⊂ G1/2 ⊂ G1. Moreover,
∃G1/4, G3/4 ∈ O between G0, G1/2 or G1/2, G1 and we take Gr ∈ O for r = k/2n. Define f = 0 on G0,
= 1 on Gc

1 and f(x) = inf{r;x ∈ Gr} for x ∈ G1 \G0. Then, f is conti.
For the inverse, UF = {f < 1/2}, UF ′ = {f > 1/2}.
· cpt Hausorff is normal.
By using that a closed set of a cpt set is cpt and T2, we can show T3, and moreover, T4.
· Regular+2nd axiom of countability ⇒ normal.
∀F1, F2 6= ∅,∈ C;F1 ∩ F2 = ∅. B: a countable top. basis. Define B1,B2 ⊂ B as follow:
B1 ≡ {Bmj} 3 B ⇐⇒ x ∈ F1,

∃B ∈ B;x ∈ B ⊂ B ⊂ F c
2

B2 ≡ {Bnk
} 3 B ⇐⇒ y ∈ F2,

∃B ∈ B; y ∈ B ⊂ B ⊂ F c
1

and set U1 = Bm1 , V1 = Bn1 \ U1, Uk = Bmk
\ (

∪k−1
j=1 Vj), Vk = Bnk

\ (
∪k

j=1 Uj). Then Uj ∩ Vk = ∅ and
the following U, V ; U ∩ V = ∅.

U :=
∪
k≥1

Uk =
∪
k≥1

Bmk
⊃ F1, V :=

∪
k≥1

Vk =
∪
k≥1

Bnk
⊃ F2.

3 In metric sp’s

A metric sp. has a countable nbd basis; U1/n(x), and satisfies 1st axiom of countability. Moreover, it
satisfies T1 and T4, and hence, it is normal.

· In a metric sp. separable (existence of a countable dense set) ⇐⇒ 2nd axiom of countability
(existence of countable top. basis).
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· totally bounded, i.e., ∀ε > 0, ∃U1, . . . , Un; 0 < D(Uk) ≤ ε,X ⊂
∪
Uk ⇒ separable, where D(U) =

supx,y∈U d(x, y).
· In a metric sp. the following are equivalent: cpt, countable cpt, seq. cpt, totally bdd and complete,

where complete
def⇐⇒ An arbitrary Cauchy seq. converges, and a Cauchy seq. {an}

def⇐⇒ d(an, am) →
0 (m,n → ∞).

· Euclidean sp’s are complete.
It is enough to show 1-dim. case. A Cauchy seq. is bdd. By Bolzano-Weierstrass, ∃ converging

sub-seq. Hence, (it is easy to show that) an original Cauchy seq. converges to the same limit.
Equivalent metric: In a metric sp. (X, d), another metric d′ is equivalent to d, i.e., d′ ∼= d; if the

top. under d′ is the same as the one under d.
· d′ ∼= d ⇐⇒ d(xn, x) → 0 ⇐⇒ d′(xn, x) → 0
d1(x, y) := d(x, y)/(1 + d(x, y)), d2(x, y) = d(x, y) ∧ 1 ⇒ d1 ∼= d2 ∼= d.
Product metric sp’s
(Xn, dn): metric sp.
Finite numbers of n: Define a metric of X =

∏N
n=1Xn as d(x, y) = (

∑N
n=1 dn(xn, yn)

2)1/2.
Infinitely many numbers: X =

∏∞
n=1Xn has a metric:

d(x, y) :=

∞∑
n=1

dn(xn, yn) ∧ 2−n.

A set metric d(A,B) := inf{d(x, y);x ∈ A, y ∈ B}
Especially, d(x,A) := infy∈A d(x, y).
· It holds |d(x,A)− d(y,A)| ≤ d(x, y), and hence, d(x,A) is conti. in x.
∀z ∈ A, d(x,A) ≤ d(x, z) ≤ d(x, y) + d(y, z). Since z ∈ A is arbitrary, it holds d(x,A) ≤ d(x, y) +

d(y,A), i.e., d(x,A)− d(y,A) ≤ d(x, y). By exchanging x, y, we have desired result.
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